Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Control Release ; 344: 147-156, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35217100

RESUMO

Surgery is an important treatment for cancer; however, local recurrence following macroscopically-complete resection is common and a significant cause of morbidity and mortality. Systemic chemotherapy is often employed as an adjuvant therapy to prevent recurrence of residual disease, but has limited efficacy due to poor penetration and dose-limiting off-target toxicities. Selective delivery of chemotherapeutics to the surgical bed may eliminate residual tumor cells while avoiding systemic toxicity. While this is challenging for traditional drug delivery technologies, we utilized advances in 3D printing and drug delivery science to engineer a drug-loaded arrowhead array device (AAD) to overcome these challenges. We demonstrated that such a device can be designed, fabricated, and implanted intraoperatively and provide extended release of chemotherapeutics directly to the resection area. Using paclitaxel and cisplatin as model drugs and murine models of cancer, we showed AADs significantly decreased local recurrence post-surgery and improved survival. We further demonstrated the potential for fabricating personalized AADs for intraoperative application in the clinical setting.


Assuntos
Sistemas de Liberação de Medicamentos , Neoplasias , Animais , Camundongos , Neoplasias/tratamento farmacológico , Paclitaxel , Preparações Farmacêuticas , Impressão Tridimensional
2.
Acta Biomater ; 124: 327-335, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33556606

RESUMO

Chemoradiotherapy with cisplatin and etoposide is a curative management regimen for both small and non-small cell lung cancers. While the treatment regimen is effective, it also has a high toxicity profile. One potential strategy to improve the therapeutic ratio of chemoradiation is to utilize nanotherapeutics. Nanoparticle formulation of cisplatin and etoposide, however, is challenging due to the significant mismatch in chemical properties of cisplatin and etoposide. Herein we report the formulation of a polymeric nanoparticle formulation of cisplatin and etoposide using a prodrug approach. We synthesized a hydrophobic platinum prodrug, which was then co-delivered with etoposide using a nanoparticle. Using mouse models of lung cancer, we demonstrated that dual-drug loaded nanoparticles are significantly more effective than small molecule chemotherapy in chemoradiotherapy. These results support further investigation of nanoparticle-based drug formulations of combination chemotherapies and the use of nanotherapeutics in chemoradiotherapy. STATEMENT OF SIGNIFICANCE: The treatment of lung cancer often involves a combination of chemotherapy and radiation. While it can be effective, it also has a high toxicity profile. Preferential delivery of chemotherapeutics to the tumor while avoiding normal tissue would improve efficacy and lower toxicity. While this is challenging with conventional drug delivery technologies, nanotechnology offers a unique opportunity. In this study, we have engineered nanoparticles that are loaded with combination chemotherapeutics and showed such nanotherapeutics are more effective and less toxic than free chemotherapeutics in chemoradiotherapy. Our work highlights the importance and potential of nanoformulations of combination chemotherapy in chemoradiotherapy and cancer treatment. This approach can be translated clinically and it can have a significant impact on cancer treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Nanopartículas , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Quimiorradioterapia , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Etoposídeo/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Camundongos
3.
Biomaterials ; 169: 1-10, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29631163

RESUMO

Most ovarian cancer patients respond well to initial platinum-based chemotherapy. However, within a year, many patients experience disease recurrence with a platinum resistant phenotype that responds poorly to second line chemotherapies. As a result, new strategies to address platinum resistant ovarian cancer (PROC) are needed. Herein, we report that NP co-delivery of cisplatin (CP) and wortmannin (Wtmn), a DNA repair inhibitor, synergistically enhances chemoradiotherapy (CRT) and reverses CP resistance in PROC. We encapsulated this regimen in FDA approved poly(lactic-co-glycolic acid)-poly(ethylene glycol) (PLGA-PEG) NPs to reduce systemic side effects, enhance cellular CP uptake, improve Wtmn stability, and increase therapeutic efficacy. Treatment of platinum-sensitive ovarian cancer (PSOC) and PROC murine models with these dual-drug loaded NPs (DNPs) significantly reduced tumor burden versus treatment with combinations of free drugs or single-drug loaded NPs (SNPs). These results support further investigation of this NP-based, synergistic drug regimen as a means to combat PROC in the clinic.


Assuntos
Antineoplásicos/administração & dosagem , Cisplatino/administração & dosagem , Portadores de Fármacos , Nanopartículas , Neoplasias Ovarianas/tratamento farmacológico , Wortmanina/administração & dosagem , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Quimiorradioterapia/métodos , Cisplatino/farmacologia , Sinergismo Farmacológico , Feminino , Humanos , Camundongos , Nanopartículas/química , Poliésteres/química , Polietilenoglicóis/química , Wortmanina/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...